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Small-amplitude excitations in a deformable discrete nonlinear Schrdinger equation

V. V. Konotop* and M. Salernb
Department of Theoretical Physics, University of Salerno, 1-84100, Salerno, Italy
(Received 9 July 1996

A detailed analysis of the small-amplitude solutions of a deformed discrete nonlineadBgemequation

is performed. For generic deformations the system possesses “singular” points which split the infinite chain in
a number of independent segments. We show that small-amplitude dark solitons in the vicinity of the singular
points are described by the Toda-lattice equation while away from the singular points they are described by the
Korteweg—de Vries equation. Depending on the value of the deformation parameter and of the background
level several kinds of solutions are possible. In particular, we delimit the regions in the parameter space in
which dark solitons are stable in contrast with regions in which bright pulses on nonzero background are
possible. On the boundaries of these regions we find that shock waves and rapidly spreading solutions may
exist.[S1063-651X%97)01902-9

PACS numbgs): 03.20:+i, 11.10.L.m, 42.65-k, 43.25:+y

I. INTRODUCTION =1 were also considered |6] and in the case€@ <1 in
[7] while the spatial properties and the existence of breath-
The general discrete nonlinear Scoflimger equation erlike impurity modes were reported in Ref8,9]. All these

(GDNLS) studies dealt mainly with the attractive case., >0) at
_ w,=0, in which bright solitary pulses are stable.
idn+ (14 7|0 *) (Gn- 11 Un+ 1~ 2Gn) + 2(wn+ || ?) 0y =0 The aim of the present paper is to investigate the proper-

ties of the small-amplitude solution of the GDNLS equation
in the repulsive casg<<0. In the following we refer to this
was introduced in Ref1] as a generalization of the simple as the stable case since the plane wave solutions correspond-
tight-binding linear Schrdinger model for the dynamics of ing to the center of the Brillouin zon@Z) are modulation-
quasiparticles in a molecular crystal. In this equatigrep-  ally stable. To this end we consider= — e with 0<e<1
resents the complex mode amplitude of the molecular vibraand fix w,=p? with p a constant which will be associated
tion at siten, w, is the on-site frequency of the vibration, with the amplitude ofq,, either at infinity or at the singular
while the nonlinear terms arise, in the adiabatic and smalpoints (see below.
field approximation, as the result of the interaction of the The GDNLS is then written as
quasiparticle with the lattice. From a mathematical point of
view this system represents a norm preserving deformatiofg + (1— €| q,|?)(0n_1+ dns 1~ 200) + 2(p%— |0nl?)9n=0.
of the diagonal discretization of the nonlinear Salinger
equation(DNLS). The presence of the deformation param-
eter neR in the system allows one to study, both at theThe inverse scattering technique for Eg) at e=1 (stable
classical and at the quantum level, the interplay betweenlL) has been developed ja0], its dark soliton solution has
on-site—intersite interactions as well as integrability-been found if11], and Bloch oscillations of the dark soliton
nonintegrability and discrete-continuum propertj@s-7,9.  in a constant electric field were reported ir2] [note that we
For »=1 (off-diagonal nonlinearitythe GDNLS reduces to have changed the sign in front to the on-site nonlinearity in
the integrable Ablowitz-LadiKAL) model with exact soliton Eq. (2) just to havee=1 as the AL limii.
solutions while forp=0 (on-site nonlinearity it gives the Though many aspects of the behavior of solutions of Eq.
nonintegrable DNLS system. For intermediate valueg @f  (2) at e=1 are very similar to the behavior of their counter-
allows all possible splitting of the nonlinearity among threeparts in the continuum limit(see, e.g.[13]) it has been
adjacent sitegequal splitting is aty=2/3). The properties of shown in[14,15 that there are drastic differences between
the localized mode solutions and of the plane wawesdu-  the discrete and continuum dynamics when the amplitude of
lational instability of Eq. (1) were studied in a series of a site excitation approaches one. In this case the dispersive
publicationg 4,5]. Bloch oscillations of bright solitons in the term becomes zero and the given site decouples from its
external electric field ¢®,=yn, y being a constahtat neighbors. It is a direct consequence of the explicit form of
Eq. (2) that ate<1 a site must have an amplituge= e /2
to become decoupled. When this happens we call the corre-
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small-amplitude approximation are described by the Todaassociated with the dynamics of the segment betweeand
lattice equation. Away from singular points we find that darkl ., which naturally follows from Eq(4).

solitons can exist in certain regions of parameter space The integrall, | allows us to find an explicit solution in
(e,p) and in the small-amplitude limit are described by soli-the case in which one point is placed between two singular

tons of the Korteweg—de Vrie&kdV) equation. In addition points. For the sake of definiteness let us assume that
we find a region in the parameter space in which dark soli{ | = + 1, with

tons are unstable and bright pulses on nonzero background

are stable. On one of the boundaries of this region we find, q-1=€ Pexplingt+id) (8)

quite surprisingly, that the system becomes effectively dis-

persionless and the formation of shock waves becomes pobeing singular points. Representing the solution of the

sible. The second boundary corresponds to an effectively linmiddle point as

ear regime where initially localized pulse spreads out quite

rapidly. The analytical results, derived in terms of a multiple do= € Y2vexp(i wgt) 9

scale expansion, are found in good agreement with direct

numerical simulations of the GDNLS even behind the limitone arrives at the following expression for the integral of

of validity of the small-amplitude approximation. motion:
The paper is organized as follows. In Sec. Il we study

singular point solutions of the GDNLS by considering the

case of a single site between two singular points. In Sec. llI

we examine small-amplitude dark solitons in the neighbor-

hood of the singular points in terms of the Toda chain. InHere { and ¢ are real and imaginary parts of v=_+ié.

Sec. IV we consider a multiple scale expansion of the dy-Just from this expression one can see an essential qualitative

namics of chain excitations when the amplitude of the backdifference in dynamics of the AL model and GDNLS equa-

ground is less than the amplitude of the singular points. Fition. In the first cas¢15], i.e., ate=1, there is a region of

nally we briefly discuss the regime of zero effective parametergat |v|>1) where the lattice becomes unstable,

nonlinearity and the possibility of shock wave solutions inthis being displayed by an infinite growth &fduring finite

the GDNLS. In the conclusions we summarize the main retime. In contrast, even a small value of the differenceel

1—€
| _1,=2{c0S9+ T(1+g2+ £2). (10)

sults of the paper. will prevent this growth. The equations fog,§) can be
obtained from Hamilton’s equations with respect to the non-
II. SINGULAR POINTS AND ONE-SITE DYNAMICS standard Poisson brackets
Let us consider Eq(2) subject to the nonzero boundary , | 0f 99 af 99
conditions o=+ O e~ s a0 @
qn—pe*Pemkntet  ain .+ o, (3)  with respect to the Hamiltoniah_, ;. Indeed, forH=1_,,
we have

where k denotes the wave vector from the first Brillouin

zone: ke[—m, 7], w(k)=4(1— ep?)sirf(ki2) is the fre- _ —€

quency of the background, anfl is a constant phase. It §={H,§}=—ZT[1—(§2+ )¢, (12)
possesses the following integral of motion:

oo

. 1-€
_ _ ={H,&=2——[1—(2+ (A +), 13
I:n;m {G(annfl+anlqn)+2(l_6)(|qn|2_92)}- ¢ { g} € [ (ENA+Y 13

(40 whereA=[e/(1—€)]cos?.
Taking into account the explicit form df_, ; one finds a

As mentioned above, if at some sitethe amplitude of 0s-  .qvenient parametrization of the problem as

cillations ise~ %2, and hence

Q= e U2giwot—ikn+id, 5) {+A=Rcosy, §£=Rsiny, (14

_ whereR is a positive constant playing the role of the radius
with of the orbit in the phase portrait and is related to the energy
2 -1 by
we=2(p*—€" "), (6)
€

the evolution ofg,,_; becomes disconnected frogg, ;. R?=——| 117t A2—1. (15

So, for two singular points placed on sitesandl , (with 1-e

.. integers, there is an integral of motion The dynamical equation&l?2), (13) are easily solved and

give the following two different types of orbits.
(@ If R<|1—A| or R>|1+ A| (hereafter without restric-
tion of generality we takep e[ — m/2,7/2]) the motion is
(7) periodic and is governed by the equations

I

oy, = 2 {e(@nn-1t Gn- 100 +2(1- €)lan|}
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Here &y,{y denote the initial values &t=0.

(b) If |1—A|<R<|1+A| the system displays aperiodic

motion described by the equations
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ther to the center of the B&=0, or to the edge of the BZ,
k= .
The AL dark soliton €=1) is written in the form

a1 siey |12
dh-(W=p costt(Kn—Qt)
X exf —itandtanh( Kn—Qt)], (23
with the parameterk,3,p linked by
inhe = —"—sind (24)
sinhz = ind.
2 1=

The phase) parametrizes the family of the soliton solutions
and is chosen in the interval r,7]. The small-amplitude
limit corresponds to the cas@<0. In order to expand Eq.
(23) aroundd =0 we observe that the most natural represen-
tation of the solution of the GDNLS equation et 1 is

On= k"€ MH(1—y2pag)e ! vHnTied, (29

Acosi® —1 where y<1 is a small parameter,a,=a,(7) and
(=—Rsora TN (20 y.=x.(7) are two real functions of the slow time
7=2y\2(e T=1—«)t, and w, is given by Eq.(6). The
sinh® parameters=*1 introduced in Eq.(25) will be used to
&= R\/l—Azm, (21 choose two different background oscillations, i.e., in-phase
cos oscillations =1) and out-of-phase oscillationsc€ — 1)
where corresponding tok=0 and k=, while the parameter
pu==x1 is used to obtain either darkuE1) or bright
_ Iy (u=—1) pulses.
O=4RV1-A%(cosht Substituting Eq(25) in Eq. (2) and gathering all the terms
ol EoVI—AZ+ (A+1)(R+ A+ o) ’ of orders up toy® we arrive at the following Toda system
+2In .
r%dl—ALﬂA+1XR+A+§@ (22 [
da,
and the constanA is given by Eq.(19) (note that now G~ an(Cn=Cn-1), (26)
Ac<1).
The existence of two regimes oscillating and aperiodic is dc
evident from the phase portrait which consists of circles of —=a,,,—a,, (27)
the radiusR which in the integrable limit=1 degenerates dr
into a straight line. In the aperiodic case a circular trajector)(/vhere
always crosses the unit circlgiven by|»|=1), the crossing
point being just the singular point. Thus fm| <1 an initial cn=v2[€ T=1— k[(Xn—Xni1), (28)
condition will move on the circle characterized Ryand, as
t—oo, it will reach the singular point on the unit circle. For and
|A|>1 there will be no crossing and the point will continue
to rotate on the respective circle. w=rksgne 1—1—«k). (29

From the above analysis it follows that if initially
lgnl<e€ 1 (or |g,|=€"1) this will be true for all times. This
property is valid also for the integrable AL systédb—17.

(For the integrable case this system was also obtained in

[18].) We have therefore that small-amplitude dark pulses

near the singular points can be viewed as exact solitons of

the Toda lattice moving on the oscillating background

pexplwgt). Whenk=1 (k=0), it follows from Eq.(29) that

pn=1,i.e., the respective solutiggb) is always dark, so that
Rather complete description of the dynamics of &j.is its energy profile is always below the background level. On

also available for the small-amplitude pulses. Indeed, startinghe other hand, at the edge of the BZ we have that—1

with the case of the excitations slightly deviating from theand the sign ofu depends ore. We find thatu=1 for

singular points, we can consider backgrounds for the nonline<1/2 andu=—1 for e>1/2. This implies that ak=

ear excitations in the form of arbitrary.e., with arbitrary =~ small-amplitude dark solitons exist fo¢>1/2 while for

k values in the BZ set of the singular points. For the sake of e>1/2 a bright pulse should appear. To check these predic-

simplicity in the present section we restrict the analysis eitions we have numerically integrated the GDNLS system

[ll. SMALL-AMPLITUDE DARK SOLITONS
NEAR SINGULAR POINTS
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FIG. 1. Time evolution of an initial dark pulseu&1) on an
in-phase backgroundk(=1) ate=0.25. The total integration time
is 300. The initial condition corresponds to a soliton of the Toda
lattice.

FIG. 3. Same as in Fig. 2 but for a dark initial condition at
€=0.75.

bility and the dynamics manifests a strong dispersive char-
_ ] _ ) ~acter(weakly nonlinear or effectively linear regimen Figs.
with a fifth-order Runge-Kutta adaptive step-size algorithmy and 5 the time evolution of a bisoliton, respectively, dark
(the numerical error was controlled by checking the consergng bright, at the “critical” valuee= 1/2 is reported. We see

vation of the norm up to the fifth decimal digitn Fig. 1the  that in both cases the profiles decay in background radiation
time evolution of a small-amplitude dark soliton on a line of j5 agreement with our prediction.

1500 sites with an in-phasecE& 1) background is reported.

Here the initial condition is of the form of a one-soliton IV. SMALL-AMPLITUDE EXCITATIONS
solut!on of the Toda lattice which correqur_lds to a blsc_)htc_)n FAR FROM THE SINGULAR POINTS
solution of the GDNLS. We see that the initial pulse splits in AND SHOCK WAVES OF THE GDNLS

two dark excitations which are stable over long time. This is

in contrast with what happens for a bright profile on the same In order to find dynamical equations for small-amplitude
background and for the same parameter values as reportedplses far from the singular points we apply the same analy-
Fig. 1. This behavior is found to be true for all valuesedh sis as in the preceding section but now we expand around
the range (0,1 The same analysis, but for an out-of-phase i (t)

background k= —1), shows that bright pulses are stable An=[p+an(t)]e """, (30)

and dark ones are unstableef<1/2, while dark pulses are

stable and bright ones are unstableif1/2. In Figs. 2 and where
3, we have reported the evolution of a bright and dark a,(t)=y2a (T, X;7) + y*a(T,X; 1) +---, (3D
GDNLS bisoliton fore values, respectively, at=0.25 and
€=0.75. We see that the pulses are quite stable, in agreement ¢ (t)=y®O(T,X;7)+ y*dV(T,X;1)+---. (32
with our predictions. From the above analysis it is also clear
that at the “critical” valuee=1/2 the solution changes sta- In the above expansioK= yn, T= yt denote fast space
and time variables while= vt represents a slow time. By
2
e gl ;
T
o | . et
4.336 | : i Al L
e 2 f Witk
4332 - 1.841 | ..
433 | 184 | "'vv
4,328 1.839
4326 pregl .
300

FIG. 2. Time evolution of an initial brightg=—1) pulse on an
out-of-phase backgroundk & —1) ate=0.25. The total integration FIG. 4. Time evolution of an initial dark pulseu&1) on an
time is 300. The initial condition corresponds to a soliton of the out-of-phase background & — 1) at the critical valug=0.5. The
Toda lattice. total integration time is 1200.
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FIG. 5. Same as in Fig. 4 but for a bright pulse= —1).

analyzing the equations of all orders froprup to y° we find
that at the leading ordersyf, y°) the GDNLS system re-
duces to

IPp©
i =4p?a?, (33
9al? , D0
g ~(1-ep )W' (34

From system(33), (34) it readily follows that the excita-
tion at leading order moves with the velocity

V.=—2p1—ep?

(39

(the given sign of the velocity is chosen only for the sake of

conveniencg which depends on the background level.
It is of interest to note that the velocity=Q/K of the
AL dark soliton in the small-amplitude limit takes the form

2

p
———(3-4p?),
3 1—p2( p°)

whereV,, is given by Eq(35) ate=1 and coincides with the
velocity of linear waves against the backgroynth the long
wavelength limit(i.e., in the center of the BZ It also fol-
lows from Eq.(36) thatV coincides with the velocity of the
linear waves whep?=3/4.

In the next two orders iy we obtain the equations

9P 2.(1) © 2 o%al® 2,(0)2
aT —4p“a't=— —(1—e€p )W-FG,DH )
(37)
dafy NG
oT ( €p ) axz
9a® 1 5%®
= — + —
gt 12 JToX?
4,02 da?
(92— PAY L P(V)]
(2—5e€p )( V. a X (38
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FIG. 6. Parameter space,p). The window where bright pulses
against a nonzero background exist is bounded by the cyfyes
e=1/p?—1/3 and(2) e=3/(4p?). The curve(3), e=1/p?, corre-
sponds to the singular points and in its vicinity the small-amplitude
excitations of the system are governed by the Toda-lattice equation.

()

lg.. 2
dn

0.645
0.64
0.635
0.63
0.625
0.62
0.615

FIG. 7. (a) Time evolution of an initial dark pulse corresponding
to a KdV soliton for parameter values=0.4,0=0.8. (b) Same as
in (@ but for initial bright pulse. The total integration time is
T=1200.
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FIG. 8. (a) Time evolution of an initial dark pulse for parameter
valuese=0.4,p=1.5. (b) Same as ina) but for an initial bright FIG. 9. (a) Time evolution of an initial bright pulse for param-
pulse. The total integration time = 1200. eter values=0.16p=1.7.(b) Same as irfa) but for an initial dark
pulse. The total integration time &= 1200.
It is remarkable that the compatibility condition of these
two equations directly leads to the following KdV equation: jzed pulse will spread out in background radiatiow soli-
tonlike excitationg On the other hand, on curve 1 of Fig. 6,

9a® 1 35(0) : e
_ rey) T4 e 2 which represents the other dark-bright interface, the system
ApVi-—ep ar 3(1 epI3= (et 1)p7] EyAl has different dynamical properties since it becomes effec-
920 tively dispersionless, it is seen from E89). Since the non-
a . . . . . .
+8p2%(3—4ep?)al® -0, (39) linearity on this curve is not zero we expect this case to give

Y4 shock solutiongsee below.

To check these results we have numerically computed the
whereZ denotes the running variabl=X—-V_T. We re-  time evolution of small-amplitude bright and dark excitations
mark that a similar result was also obtained in Rg5s19). for parameter values taken in different regions of Fig. 6. In

Equation(39) allows soliton solutions corresponding both Fig. 7(a) the evolution of a dark soliton at=0.4,0=0.8 is
to positive and negativa(® depending on the sign of the reported. In Fig. #) we show the same evolution but for an
prefactors in the dispersive and nonlinear terms. The resultigitially bright pulse for the same parameter values as in Fig.
of the respective analysis are illustrated in Fig. 6. In this7(a). From these figures it is clear that parameter values on
figure the region between the curves 1 and 2 marked witlthe left of curve 1 correspond to stable dark pulse propaga-
B corresponds to parameter values for which stable propagaion and to decaying bright excitations. A similar behavior is
tion of bright solitons against the background is possible. Irfound in the region between curve 2 and curve 3. This is seen
this region dark solitons will not be stable and they will from Figs. &) and 8b) in which the evolution of, respec-
decay in background radiation. The line 3 itself determinegively, a dark and a bright excitation is reported at parameter
the amplitude of the singular points=1/p?. Close to this valuese=0.4,0=1.5. In the region between curve 1 and
line the dynamics of small-amplitude excitations follows curve 2 the behavior is just the opposite, i.e., dark solitons
Toda equations as described in Sec. Il. The areas marketkecay in background radiation while bright pulses can propa-
with D in Fig. 6 correspond to parameter regions in whichgate as solitary waves. This is shown in Fig&%nd 9b)
dark solitons are stable while bright ones are unstable. Ofor, respectively, a bright and a dark initial profile at param-
curve 2 of Fig. 6] e=3/(4p?)] the nonlinear term becomes eter valuese=0.16p=1.7. It is of interest to remark that
zero as is evident from E@39). This implies that any local- while for the pulses of Fig.(p), the radiation is on the front,
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for dark pulses as will be reported in more extended form
elsewhereg[20]. We should mention that the possibility of
shock waves in other chains was also reported in R4fl.

V. CONCLUSION

We have analyzed the properties of the small-amplitude
solutions of the GDNLS. Like the well-known AL model the
GDNLS equation has singular points for aldifferent from
zero which provide effective decoupling of the chain. In this
sense one can speak about the dominant role of the nonlin-

earity of the “AL type” in the behavior of the system. In the
200 400 %00 800 7000 135 o meantime, the properties of the singular points are essentially
n different in the cases=1 ande<1.
The small-amplitude excitations against constant ampli-

FIG. 10. Shock wave formation from a smooth bright pulse atf[Ude background§ "?“_e govemef’ by the TOda'Iattice equation
parameter valueg=0.3641),0=1.2 on curve 1 of Fig. 6. The I they are inthe vicinity of the singular points or by the KdV
total integration time isr = 1200. equation if the background amplitude is less thaiel/The

type of solution essentially depends not only on the defor-
in Figs. 8b) and 9b) the radiation is just on the back. This mation parameter but also on the chosen point in the BZ.
corresponds to the fact that wave packets in the region on tHexistence of the bright pulses against nonzero background
left of curve 1 always have group velocity greater than theabove singular points is a nontrivial qualitative demonstra-
velocity V. of the background radiation while the opposite is tion of the mentioned differences. We have delimited the
true for the complementary regions. regions in the parameter space in which dark solitons are

From Eq.(39) it is evident that fore=1/p2—1/3 the dis-  Stable in contrast with regions in which bright pulses on
persion disappears and the resulting equation possess@@nzero background are. On the boundaries of these regions
shock wave solutions. This surprising property of thewe have found, quite surprisingly, that shock waves may
GDNLS system has been numerically checked in Fig. 10. IrgXISt.
this figure the time evolution of an initial bright profile is
reported for parameter values taken on curv'eul of Fig. 6 at ACKNOWLEDGMENTS
€=0.3611), p=1.2. We see that the smooth initial profile is
distorted with the top moving at higher velocity than the V.V.K. thanks the Department of Theoretical Physics of
bottom part of the profile. This gives rise to a forward bend-the University of Salerno for the warm hospitality. Financial
ing of the profile with breaking of the wave and rapid oscil- support from INTAS Grant No. 93-1324 and from INFM
lations on the wave front. A similar behavior is observed alscunita’ di Salerno is also acknowledged.
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