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Small-amplitude excitations in a deformable discrete nonlinear Schro¨dinger equation

V. V. Konotop* and M. Salerno†

Department of Theoretical Physics, University of Salerno, I-84100, Salerno, Italy
~Received 9 July 1996!

A detailed analysis of the small-amplitude solutions of a deformed discrete nonlinear Schro¨dinger equation
is performed. For generic deformations the system possesses ‘‘singular’’ points which split the infinite chain in
a number of independent segments. We show that small-amplitude dark solitons in the vicinity of the singular
points are described by the Toda-lattice equation while away from the singular points they are described by the
Korteweg–de Vries equation. Depending on the value of the deformation parameter and of the background
level several kinds of solutions are possible. In particular, we delimit the regions in the parameter space in
which dark solitons are stable in contrast with regions in which bright pulses on nonzero background are
possible. On the boundaries of these regions we find that shock waves and rapidly spreading solutions may
exist. @S1063-651X~97!01902-8#

PACS number~s!: 03.20.1i, 11.10.Lm, 42.65.2k, 43.25.1y
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I. INTRODUCTION

The general discrete nonlinear Schro¨dinger equation
~GDNLS!

i q̇n1~11huqnu2!~qn211qn1122qn!12~vn1uqnu2!qn50
~1!

was introduced in Ref.@1# as a generalization of the simp
tight-binding linear Schro¨dinger model for the dynamics o
quasiparticles in a molecular crystal. In this equationqn rep-
resents the complex mode amplitude of the molecular vib
tion at siten, vn is the on-site frequency of the vibration
while the nonlinear terms arise, in the adiabatic and sm
field approximation, as the result of the interaction of t
quasiparticle with the lattice. From a mathematical point
view this system represents a norm preserving deforma
of the diagonal discretization of the nonlinear Schro¨dinger
equation~DNLS!. The presence of the deformation para
eter hPR in the system allows one to study, both at t
classical and at the quantum level, the interplay betw
on-site–intersite interactions as well as integrabili
nonintegrability and discrete-continuum properties@2–7,9#.
For h51 ~off-diagonal nonlinearity! the GDNLS reduces to
the integrable Ablowitz-Ladik~AL ! model with exact soliton
solutions while forh50 ~on-site nonlinearity! it gives the
nonintegrable DNLS system. For intermediate values ofh it
allows all possible splitting of the nonlinearity among thr
adjacent sites~equal splitting is ath52/3). The properties of
the localized mode solutions and of the plane waves~modu-
lational instability! of Eq. ~1! were studied in a series o
publications@4,5#. Bloch oscillations of bright solitons in the
external electric field (vn5gn, g being a constant! at
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h51 were also considered in@6# and in the case 0,h<1 in
@7# while the spatial properties and the existence of brea
erlike impurity modes were reported in Refs.@8,9#. All these
studies dealt mainly with the attractive case~i.e., h.0) at
vn50, in which bright solitary pulses are stable.

The aim of the present paper is to investigate the prop
ties of the small-amplitude solution of the GDNLS equati
in the repulsive caseh,0. In the following we refer to this
as the stable case since the plane wave solutions corresp
ing to the center of the Brillouin zone~BZ! are modulation-
ally stable. To this end we considerh52e with 0,e,1
and fix vn5r2 with r a constant which will be associate
with the amplitude ofqn either at infinity or at the singula
points ~see below!.

The GDNLS is then written as

i q̇n1~12euqnu2!~qn211qn1122qn!12~r22uqnu2!qn50.
~2!

The inverse scattering technique for Eq.~2! at e51 ~stable
AL ! has been developed in@10#, its dark soliton solution has
been found in@11#, and Bloch oscillations of the dark solito
in a constant electric field were reported in@12# @note that we
have changed the sign in front to the on-site nonlinearity
Eq. ~2! just to havee51 as the AL limit#.

Though many aspects of the behavior of solutions of E
~2! at e51 are very similar to the behavior of their counte
parts in the continuum limit~see, e.g.,@13#! it has been
shown in @14,15# that there are drastic differences betwe
the discrete and continuum dynamics when the amplitude
a site excitation approaches one. In this case the disper
term becomes zero and the given site decouples from
neighbors. It is a direct consequence of the explicit form
Eq. ~2! that ate,1 a site must have an amplituder5e21/2

to become decoupled. When this happens we call the co
sponding point a singular point. Thus singular points, sp
ting the infinite chain in a number of independent segme
exist for the GDNLS for arbitrary nonzero values of the d
formation parameter. In the present paper, by performin
multiple scale expansion of the GDNLS around singu
points, we show the existence of dark solitons which in

th-
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55 4707SMALL-AMPLITUDE EXCITATIONS IN A DEFORMABLE . . .
small-amplitude approximation are described by the To
lattice equation. Away from singular points we find that da
solitons can exist in certain regions of parameter sp
(e,r) and in the small-amplitude limit are described by so
tons of the Korteweg–de Vries~KdV! equation. In addition
we find a region in the parameter space in which dark s
tons are unstable and bright pulses on nonzero backgro
are stable. On one of the boundaries of this region we fi
quite surprisingly, that the system becomes effectively d
persionless and the formation of shock waves becomes
sible. The second boundary corresponds to an effectively
ear regime where initially localized pulse spreads out qu
rapidly. The analytical results, derived in terms of a multip
scale expansion, are found in good agreement with di
numerical simulations of the GDNLS even behind the lim
of validity of the small-amplitude approximation.

The paper is organized as follows. In Sec. II we stu
singular point solutions of the GDNLS by considering t
case of a single site between two singular points. In Sec
we examine small-amplitude dark solitons in the neighb
hood of the singular points in terms of the Toda chain.
Sec. IV we consider a multiple scale expansion of the
namics of chain excitations when the amplitude of the ba
ground is less than the amplitude of the singular points.
nally we briefly discuss the regime of zero effecti
nonlinearity and the possibility of shock wave solutions
the GDNLS. In the conclusions we summarize the main
sults of the paper.

II. SINGULAR POINTS AND ONE-SITE DYNAMICS

Let us consider Eq.~2! subject to the nonzero bounda
conditions

qn→re6 iqe2 ikn1v~k!t atn→6`, ~3!

where k denotes the wave vector from the first Brillou
zone: kP@2p,p#, v(k)54(12er2)sin2(k/2) is the fre-
quency of the background, andq is a constant phase. I
possesses the following integral of motion:

I5 (
n52`

`

$e~qnq̄n211qn21q̄n!12~12e!~ uqnu22r2!%.

~4!

As mentioned above, if at some siten the amplitude of os-
cillations ise21/2, and hence

qn5e21/2eiv0t2 ikn1 iq, ~5!

with

v052~r22e21!, ~6!

the evolution ofqn21 becomes disconnected fromqn11.
So, for two singular points placed on sitesl2 andl1 ~with

l6 integers!, there is an integral of motion

I l2 ,l1
5 (

n5 l211

l1

$e~qnq̄n211qn21q̄n!12~12e!uqnu2%

~7!
-
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associated with the dynamics of the segment betweenl2 and
l1 , which naturally follows from Eq.~4!.

The integralI l2 ,l1
allows us to find an explicit solution in

the case in which one point is placed between two singu
points. For the sake of definiteness let us assume
l6561, with

q615e21/2exp~ iv0t6 iq! ~8!

being singular points. Representing the solution of
middle point as

q05e21/2nexp~ iv0t ! ~9!

one arrives at the following expression for the integral
motion:

I21,152zcosq1
12e

e
~11z21j2!. ~10!

Here z and j are real and imaginary parts ofn: n5z1 i j.
Just from this expression one can see an essential qualit
difference in dynamics of the AL model and GDNLS equ
tion. In the first case@15#, i.e., ate51, there is a region of
parameters~at unu.1) where the lattice becomes unstab
this being displayed by an infinite growth ofj during finite
time. In contrast, even a small value of the difference 12e
will prevent this growth. The equations for (z,j) can be
obtained from Hamilton’s equations with respect to the no
standard Poisson brackets

$ f ,g%5@12~z21j2!#H ] f

]z

]g

]j
2

] f

]j

]g

]z J , ~11!

with respect to the HamiltonianI21,1. Indeed, forH5I21,1
we have

ż5$H,z%522
12e

e
@12~z21j2!#j, ~12!

j̇5$H,j%52
12e

e
@12~z21j2!#~L1z!, ~13!

whereL5@e/(12e)#cosq.
Taking into account the explicit form ofI21,1 one finds a

convenient parametrization of the problem as

z1L5Rcosx, j5Rsinx, ~14!

whereR is a positive constant playing the role of the radi
of the orbit in the phase portrait and is related to the ene
by

R25
e

12e
I21,11L221. ~15!

The dynamical equations~12!, ~13! are easily solved and
give the following two different types of orbits.

~a! If R,u12Lu or R.u11Lu ~hereafter without restric-
tion of generality we takefP@2p/2,p/2#) the motion is
periodic and is governed by the equations
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4708 55V. V. KONOTOP AND M. SALERNO
z5R
AcosQ21

A2cosQ
1L, ~16!

j5RAA221
sinQ

A2cosQ
, ~17!

where

Q54AA221R~cosq!t12arctanSAA221

A11

j0
R1L1z0

D
~18!

and

A5
12R22L2

2LR
~A2.1!. ~19!

Herej0 ,z0 denote the initial values att50.
~b! If u12Lu,R,u11Lu the system displays aperiod

motion described by the equations

z52R
AcoshQ21

coshQ1A
1L, ~20!

j5RA12A2
sinhQ

coshQ1A
, ~21!

where

Q54RA12A2~cosq!t

12ln
j0A12A21~A11!~R1L1z0!

j0A12A22~A11!~R1L1z0!
~22!

and the constantA is given by Eq. ~19! ~note that now
A2,1).

The existence of two regimes oscillating and aperiodic
evident from the phase portrait which consists of circles
the radiusR which in the integrable limite51 degenerates
into a straight line. In the aperiodic case a circular traject
always crosses the unit circle~given byunu51), the crossing
point being just the singular point. Thus foruAu,1 an initial
condition will move on the circle characterized byR and, as
t→`, it will reach the singular point on the unit circle. Fo
uAu.1 there will be no crossing and the point will continu
to rotate on the respective circle.

From the above analysis it follows that if initiall
uqnu<e21 ~or uqnu>e21) this will be true for all times. This
property is valid also for the integrable AL system@15–17#.

III. SMALL-AMPLITUDE DARK SOLITONS
NEAR SINGULAR POINTS

Rather complete description of the dynamics of Eq.~2! is
also available for the small-amplitude pulses. Indeed, star
with the case of the excitations slightly deviating from t
singular points, we can consider backgrounds for the non
ear excitations in the form of arbitrary~i.e., with arbitrary
k values in the BZ! set of the singular points. For the sake
simplicity in the present section we restrict the analysis
s
f

y

g

-

i-

ther to the center of the BZ,k50, or to the edge of the BZ
k5p.

The AL dark soliton (e51) is written in the form

qn
AL~ t !5rF12

sin2q

cosh2~Kn2Vt !G
21/2

3exp@2 i tanqtanh~Kn2Vt !#, ~23!

with the parametersK,q,r linked by

sinh
K

2
5

r

A12r2
sinq. ~24!

The phaseq parametrizes the family of the soliton solution
and is chosen in the interval@2p,p#. The small-amplitude
limit corresponds to the caseq!0. In order to expand Eq
~23! aroundq50 we observe that the most natural repres
tation of the solution of the GDNLS equation ate<1 is

qn5kne21/2~12g2man!e
2 igmxn1 iv0t, ~25!

where g!1 is a small parameter,an5an(t) and
xn5xn(t) are two real functions of the slow tim
t52gA2(e21212k)t, and v0 is given by Eq.~6!. The
parameterk561 introduced in Eq.~25! will be used to
choose two different background oscillations, i.e., in-pha
oscillations (k51) and out-of-phase oscillations (k521)
corresponding tok50 and k5p, while the parameter
m561 is used to obtain either dark (m51) or bright
(m521) pulses.

Substituting Eq.~25! in Eq. ~2! and gathering all the term
of orders up tog3 we arrive at the following Toda system
@13#:

dan
dt

5an~cn2cn21!, ~26!

dcn
dt

5an112an , ~27!

where

cn5A2ue21212ku~xn2xn11!, ~28!

and

m5k sgn~e21212k!. ~29!

~For the integrable case this system was also obtaine
@18#.! We have therefore that small-amplitude dark puls
near the singular points can be viewed as exact soliton
the Toda lattice moving on the oscillating backgrou
rexp(iv0t). Whenk51 (k50), it follows from Eq.~29! that
m51, i.e., the respective solution~25! is always dark, so tha
its energy profile is always below the background level.
the other hand, at the edge of the BZ we have thatk521
and the sign ofm depends one. We find thatm51 for
e,1/2 andm521 for e.1/2. This implies that atk5p
small-amplitude dark solitons exist fore.1/2 while for
e.1/2 a bright pulse should appear. To check these pre
tions we have numerically integrated the GDNLS syst



m
e

of
.
n
to
in
i
m
ed

se
le

r

m
ea
-

ar-

rk

tion

de
aly-
d

da

he

at

55 4709SMALL-AMPLITUDE EXCITATIONS IN A DEFORMABLE . . .
with a fifth-order Runge-Kutta adaptive step-size algorith
~the numerical error was controlled by checking the cons
vation of the norm up to the fifth decimal digit!. In Fig. 1 the
time evolution of a small-amplitude dark soliton on a line
1500 sites with an in-phase (k51) background is reported
Here the initial condition is of the form of a one-solito
solution of the Toda lattice which corresponds to a bisoli
solution of the GDNLS. We see that the initial pulse splits
two dark excitations which are stable over long time. This
in contrast with what happens for a bright profile on the sa
background and for the same parameter values as report
Fig. 1. This behavior is found to be true for all values ofe in
the range (0,1#. The same analysis, but for an out-of-pha
background (k521), shows that bright pulses are stab
and dark ones are unstable ife,1/2, while dark pulses are
stable and bright ones are unstable ife.1/2. In Figs. 2 and
3, we have reported the evolution of a bright and da
GDNLS bisoliton fore values, respectively, ate50.25 and
e50.75. We see that the pulses are quite stable, in agree
with our predictions. From the above analysis it is also cl
that at the ‘‘critical’’ valuee51/2 the solution changes sta

FIG. 1. Time evolution of an initial dark pulse (m51) on an
in-phase background (k51) at e50.25. The total integration time
is 300. The initial condition corresponds to a soliton of the To
lattice.

FIG. 2. Time evolution of an initial bright (m521) pulse on an
out-of-phase background (k521) ate50.25. The total integration
time is 300. The initial condition corresponds to a soliton of t
Toda lattice.
r-
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e
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ent
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bility and the dynamics manifests a strong dispersive ch
acter~weakly nonlinear or effectively linear regime!. In Figs.
4 and 5 the time evolution of a bisoliton, respectively, da
and bright, at the ‘‘critical’’ valuee51/2 is reported. We see
that in both cases the profiles decay in background radia
in agreement with our prediction.

IV. SMALL-AMPLITUDE EXCITATIONS
FAR FROM THE SINGULAR POINTS
AND SHOCK WAVES OF THE GDNLS

In order to find dynamical equations for small-amplitu
pulses far from the singular points we apply the same an
sis as in the preceding section but now we expand aroun

qn5@r1an~ t !#e
2 iFn~ t !, ~30!

where

an~ t !5g2a~0!~T,X;t!1g4a~1!~T,X;t!1•••, ~31!

Fn~ t !5gF~0!~T,X;t!1g3F~1!~T,X;t!1•••. ~32!

In the above expansionX5gn, T5gt denote fast space
and time variables whilet5g3t represents a slow time. By

FIG. 3. Same as in Fig. 2 but for a dark initial condition
e50.75.

FIG. 4. Time evolution of an initial dark pulse (m51) on an
out-of-phase background (k521) at the critical valuee50.5. The
total integration time is 1200.
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analyzing the equations of all orders fromg up tog5 we find
that at the leading orders (g2, g3) the GDNLS system re-
duces to

]F~0!

]T
54r2a~0!, ~33!

]a~0!

]T
5~12er2!

]2F~0!

]X2 . ~34!

From system~33!, ~34! it readily follows that the excita-
tion at leading order moves with the velocity

Ve522rA12er2 ~35!

~the given sign of the velocity is chosen only for the sake
convenience!, which depends on the background level.

It is of interest to note that the velocityV5V/K of the
AL dark soliton in the small-amplitude limit takes the form

V5V01
q2r

3A12r2
~324r2!, ~36!

whereV0 is given by Eq.~35! at e51 and coincides with the
velocity of linear waves against the backgroundr in the long
wavelength limit~i.e., in the center of the BZ!. It also fol-
lows from Eq.~36! thatV coincides with the velocity of the
linear waves whenr253/4.

In the next two orders ing we obtain the equations

]F~1!

]T
24r2a~1!52

]F~0!

]t
2~12er2!

]2a~0!

]X2 16r2a~0!2,

~37!

]an
~1!

]T
2~12er2!

]2F~1!

]X2

52
]a~0!

]t
1

1

12

]3a~0!

]T]X2

2~225er2!S 4r2

Ve
Da~0!

]a~0!

]X
. ~38!

FIG. 5. Same as in Fig. 4 but for a bright pulse (m521).
f

FIG. 6. Parameter space (e,r). The window where bright pulses
against a nonzero background exist is bounded by the curves~1!
e51/r221/3 and~2! e53/(4r2). The curve~3!, e51/r2, corre-
sponds to the singular points and in its vicinity the small-amplitu
excitations of the system are governed by the Toda-lattice equa

FIG. 7. ~a! Time evolution of an initial dark pulse correspondin
to a KdV soliton for parameter valuese50.4,r50.8. ~b! Same as
in ~a! but for initial bright pulse. The total integration time i
T51200.
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55 4711SMALL-AMPLITUDE EXCITATIONS IN A DEFORMABLE . . .
It is remarkable that the compatibility condition of the
two equations directly leads to the following KdV equatio

24rA12er2
]a~0!

]t
2
1

3
~12er2!@32~3e11!r2#

]3a~0!

]Z3

18r2~324er2!a~0!
]a~0!

]Z
50, ~39!

whereZ denotes the running variableZ5X2VeT. We re-
mark that a similar result was also obtained in Refs.@5,19#.

Equation~39! allows soliton solutions corresponding bo
to positive and negativea(0) depending on the sign of th
prefactors in the dispersive and nonlinear terms. The res
of the respective analysis are illustrated in Fig. 6. In t
figure the region between the curves 1 and 2 marked w
B corresponds to parameter values for which stable prop
tion of bright solitons against the background is possible
this region dark solitons will not be stable and they w
decay in background radiation. The line 3 itself determin
the amplitude of the singular points:e51/r2. Close to this
line the dynamics of small-amplitude excitations follow
Toda equations as described in Sec. II. The areas ma
with D in Fig. 6 correspond to parameter regions in whi
dark solitons are stable while bright ones are unstable.
curve 2 of Fig. 6@e53/(4r2)# the nonlinear term become
zero as is evident from Eq.~39!. This implies that any local-

FIG. 8. ~a! Time evolution of an initial dark pulse for paramet
valuese50.4,r51.5. ~b! Same as in~a! but for an initial bright
pulse. The total integration time isT51200.
:

lts
s
th
a-
n

s

ed

n

ized pulse will spread out in background radiation~no soli-
tonlike excitations!. On the other hand, on curve 1 of Fig.
which represents the other dark-bright interface, the sys
has different dynamical properties since it becomes eff
tively dispersionless, it is seen from Eq.~39!. Since the non-
linearity on this curve is not zero we expect this case to g
shock solutions~see below!.

To check these results we have numerically computed
time evolution of small-amplitude bright and dark excitatio
for parameter values taken in different regions of Fig. 6.
Fig. 7~a! the evolution of a dark soliton ate50.4,r50.8 is
reported. In Fig. 7~b! we show the same evolution but for a
initially bright pulse for the same parameter values as in F
7~a!. From these figures it is clear that parameter values
the left of curve 1 correspond to stable dark pulse propa
tion and to decaying bright excitations. A similar behavior
found in the region between curve 2 and curve 3. This is s
from Figs. 8~a! and 8~b! in which the evolution of, respec
tively, a dark and a bright excitation is reported at parame
values e50.4,r51.5. In the region between curve 1 an
curve 2 the behavior is just the opposite, i.e., dark solito
decay in background radiation while bright pulses can pro
gate as solitary waves. This is shown in Figs. 9~a! and 9~b!
for, respectively, a bright and a dark initial profile at para
eter valuese50.16,r51.7. It is of interest to remark tha
while for the pulses of Fig. 7~b!, the radiation is on the front

FIG. 9. ~a! Time evolution of an initial bright pulse for param
eter valuese50.16,r51.7.~b! Same as in~a! but for an initial dark
pulse. The total integration time isT51200.
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4712 55V. V. KONOTOP AND M. SALERNO
in Figs. 8~b! and 9~b! the radiation is just on the back. Th
corresponds to the fact that wave packets in the region on
left of curve 1 always have group velocity greater than
velocityVe of the background radiation while the opposite
true for the complementary regions.

From Eq.~39! it is evident that fore51/r221/3 the dis-
persion disappears and the resulting equation posse
shock wave solutions. This surprising property of t
GDNLS system has been numerically checked in Fig. 10
this figure the time evolution of an initial bright profile i
reported for parameter values taken on curve 1 of Fig. 6
e50.361(1), r51.2. We see that the smooth initial profile
distorted with the top moving at higher velocity than t
bottom part of the profile. This gives rise to a forward ben
ing of the profile with breaking of the wave and rapid osc
lations on the wave front. A similar behavior is observed a

FIG. 10. Shock wave formation from a smooth bright pulse
parameter valuese50.361(1),r51.2 on curve 1 of Fig. 6. The
total integration time isT51200.
k,

e
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for dark pulses as will be reported in more extended fo
elsewhere@20#. We should mention that the possibility o
shock waves in other chains was also reported in Ref.@21#.

V. CONCLUSION

We have analyzed the properties of the small-amplitu
solutions of the GDNLS. Like the well-known AL model th
GDNLS equation has singular points for alle different from
zero which provide effective decoupling of the chain. In th
sense one can speak about the dominant role of the no
earity of the ‘‘AL type’’ in the behavior of the system. In th
meantime, the properties of the singular points are essent
different in the casese51 ande,1.

The small-amplitude excitations against constant am
tude backgrounds are governed by the Toda-lattice equa
if they are in the vicinity of the singular points or by the Kd
equation if the background amplitude is less than 1/Ae. The
type of solution essentially depends not only on the def
mation parameter but also on the chosen point in the
Existence of the bright pulses against nonzero backgro
above singular points is a nontrivial qualitative demonst
tion of the mentioned differences. We have delimited t
regions in the parameter space in which dark solitons
stable in contrast with regions in which bright pulses
nonzero background are. On the boundaries of these reg
we have found, quite surprisingly, that shock waves m
exist.
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